$\frac{\text{MATHEMATICS}}{\text{RATIONAL NUMBERS}} - \frac{1. \text{ RATIONAL AND IRRATIONAL NUMBERS}}{b}, \text{ where a and b are integers and } b \neq 0$ are known as rational numbers. Rational number is denoted by Q.

Remarks

- i) 0 is a rational number. We can write $0 = \frac{0}{1} = \frac{0}{2} \dots \dots$
- ii) Every natural number is a rational number. $1 = \frac{1}{1}$, $2 = \frac{2}{1}$ etc
- iii) Every integer is a rational number.
- iv) $\frac{1}{0}$ is not a rational number.

EQUIVALENT RATIONAL NUMBERS -

SIMPLEST FORM – A rational number $\frac{a}{b}$ is said to be simplest form or lowest terms or irreducible form, if a and b are integers having no common factors other than 1 and $b \neq 0$.

For Example – The simplest form of $\frac{6}{9}$ is $\frac{2}{3}$

Two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$ are called equal, written as $\frac{a}{b} = \frac{c}{d}$, if and only if ad = bc.

REPRESENTATION OF RATIONAL NUMBERS - Every rational number has been represented by one and only one point on the line l.

For Example: $\frac{3}{4}$

IMPORTANT RESULTS

- Let a and b be two rational numbers such that a < bthen $\frac{1}{2}(a+b)$ is a rational number lying between a and b.

Find a rational number lying between
$$\frac{1}{3}$$
 and $\frac{1}{2}$.
Here $a = \frac{1}{3}$ and $b = \frac{1}{2}$, clearly $a < b$

A rational number lying between a and $b = \frac{1}{2}(a + b)$

$$= \frac{1}{2}(\frac{1}{3}+\frac{1}{2})$$

$$= \frac{1}{2} * \frac{5}{6}$$

$$= \frac{5}{12} \quad Ans.$$

2) Let a and b be two rational numbers such that a < b, suppose we want to find n rational numbers between a and b.

Let $d = \frac{b-a}{n+1}$ then n rational numbers lying between a and b are

$$(a+d), (a+2d), (a+3d), \dots \dots (a+nd)$$

There are infinitely many rational numbers between two different rational numbers

Insert five rational numbers between 2 and 3

a = 2 and b = 3, clearly a < bWe have to find 5 rational numbers between 2 and 3.

Let
$$d = \frac{3-2}{5+1} = \frac{1}{6}$$

Now, 1st rational number $(a + d) = \left(2 + \frac{1}{6}\right) = \frac{13}{6}$ 2nd rational number $(a + 2d) = (2 + 2 * \frac{1}{6}) = \frac{7}{3}$ 3rd rational number $(a + 3d) = (2 + 3 * \frac{1}{6} = \frac{5}{2})$ 4th rational number $(a + 4d) = \left(2 + 4 * \frac{1}{6}\right) =$ 5th rational number $(a + 5d) = (2 + 5 * \frac{1}{6}) = \frac{17}{6}$

HOMEWORK

EXERCISE - 1.1

QUESTION NUMBERS: 2, 4, 6 and 9

MATHS PRACTICAL

Points to remember.

*Read and understand the experiment.

*In the Maths Practical Copy write down AIM, MATERIAL REQUIRED, METHODOLOGY, TABULAR COLUMN and CONCLUSION on the ruled page. DIAGRAM and CALCULATION on the plane page.

*Follow the PROCEDURE properly to get the correct conclusion.

*MATHS PRACTICAL COPY must be a soft cover Lab copy with atleast 50 to 60 pages.

EXPERIMENT NO. 3

AIM

To determine the parallelogram with the maximum area, among all parallelograms with a constant perimeter and a fixed base.

MATERIALS REQUIRED

- Plastic straw
- 2. Ruler and pencil
- 3. Protractor

METHODOLOGY

Area of a parallelogram= Base x height

Perimeter of a figure= Sum of all the sides.

PROCEDURE

Follow all the steps below in order

Step 1. Fold the given straw and hold the ends together so that a parallelogram is formed.

Step 2. Place the above made parallelogram on a paper and mark down its vertices.

Step 3. Join the vertices using ruler and pencil.

Step 4. Measure its base , height and one of the angles. Note down the data in the observation table.

Step 5. Repeat the step 2, 3 and 4 at least five times with parallelograms with same base but different heights. Among these trials include a case of a parallelogram with one angle 90° (i.e. Rectangle).

OBSERVATION TABLE

Perimeter of the parallelogram = ------

Trial no.	Base (constant)	Height	Angle	Area
	b	h		b.h
1				
2				
3				
4				
5				

CONCLUSION

It is clear from the observation table that ,among parallelograms with same base and constant
perimeter
is having maximum area.